
Membrane fusion is the process whereby two separate 
lipid bilayers merge to become one. It is essential for 
communication between membrane-delineated comp
artments in all eukaryotic cells (FIG. 1). The best-studied  
process involving membrane fusion is exocytosis, 
whereby vesicles fuse with the limiting membrane of 
a cell in order to release their contents (for example, 
hormones or neurotransmitters) into the extracellular 
milieu, or to deposit receptors, transporters, channels 
or adhesion molecules into the limiting membrane. 
However, large numbers of membrane-fusion events 
occur between intracellular compartments, and these 
events often involve vesicular or tubular intermediates. 
Fusion can either be heterotypic (when a membrane 
fuses with a dissimilar type of compartment; for example,  
synaptic vesicle exocytosis) or homotypic (when similar 
compartments fuse; for example, endosome–endosome 
fusion). More enigmatic processes involve the fusion 
of larger membrane-bound compartments, including  
whole cells in the case of syncytium formation. Further
more, enveloped viruses gain entry into the cytosol  
by fusing their limiting membranes with host cell  
membranes (FIG. 1).

It is now believed that most, if not all, biologi-
cal membrane fusion proceeds through a hemifusion 
intermediate1 (FIG. 2). According to this mechanism, an 
intermediate stage of membrane fusion is the merger 
of only the closest monolayers, with full fusion res
ulting in complete bilayer merging. Membrane-fusion  
intermediates are regulated by cellular proteins that 
manifest their activity through the promotion of  

membrane–membrane proximity, by bending and 
remodelling membranes, or by acting upstream to regu-
late the lipid or protein composition of the respective 
lipid bilayers. In the hemifusion model the fusion pore is 
lipidic, but according to an alternative hypothesis — the 
protein-pore model — the initial fusion pore is generated 
and lined by transmembrane proteins rather than lipids2. 
There is good evidence that transmembrane domains 
of proteins are essential for efficient SNARE-dependent  
fusion, and replacement of these transmembrane 
domains with lipid anchors leads to hemifusion inter-
mediates, whereas some viral fusion can occur in the 
absence of transmembrane anchors3.

Several energy barriers have to be overcome for 
fusion to occur. One energetically demanding process is 
to bring about the close apposition of two membranes, 
which requires protein clearance (potentially through a 
process of ‘sieving’) and the bringing together of repulsive 
membrane charges (FIGS 2,3). The energy barriers related 
to curvature deformations during hemifusion-stalk and 
fusion-pore formation and expansion must also be over-
come1,4 (FIG. 2). The role of fusion proteins is to lower 
these barriers at the appropriate time and place to allow 
the regulation of the fusion process.

Numerous membrane-fusion processes have been 
extensively studied and many molecules that are involved 
in fusion have been identified (FIG. 1). From these stud-
ies it is clear that there are distinct and structurally 
unrelated membrane-fusion molecules. Despite this, we 
argue that there are general principles that operate in all 
fusion events.

MRC Laboratory of Molecular 
Biology, Hills Road, 
Cambridge, CB2 0QH, UK.  
e-mails:  
hmm@mrc-lmb.cam.ac.uk; 
martens@mrc-lmb.cam.ac.uk
doi:10.1038/nrm2417
Published online 21 May 2008

Syncytium
A cell that contains multiple 
nuclei and that is formed either 
by cell–cell fusion or by 
incomplete cell division.

Hemifusion
An intermediate stage during 
membrane fusion that is 
characterized by the merger of 
only the contacting monolayers 
and not the two distal 
monolayers.

SNARE
(soluble N-ethylmaleimide-
sensitive fusion protein 
attachment protein receptor). 
SNARE proteins are a family of 
membrane-tethered coiled-coil 
proteins that regulate fusion 
reactions and target specificity 
in vesicle trafficking. They can 
be divided into vesicle-
associated (v)-SNAREs and 
target-membrane-associated 
(t)-SNAREs on the basis of their 
localization.
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Abstract | Membrane fusion can occur between cells, between different intracellular 
compartments, between intracellular compartments and the plasma membrane and between 
lipid-bound structures such as viral particles and cellular membranes. In order for membranes 
to fuse they must first be brought together. The more highly curved a membrane is, the more 
fusogenic it becomes. We discuss how proteins, including SNAREs, synaptotagmins and viral 
fusion proteins, might mediate close membrane apposition and induction of membrane 
curvature to drive diverse fusion processes. We also highlight common principles that can be 
derived from the analysis of the role of these proteins.
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SNARE
(soluble N-ethylmaleimide-
sensitive fusion protein 
attachment protein receptor). 
SNARE proteins are a family of 
membrane-tethered coiled-coil 
proteins that regulate fusion 
reactions and target specificity 
in vesicle trafficking. They can 
be divided into vesicle-
associated (v)-SNAREs and 
target-membrane-associated 
(t)-SNAREs on the basis of their 
localization.

Membrane-fusion events generally require mole
cules that tether and dock membranes and bring them 
into close proximity, molecules that locally disturb the 
lipid bilayers (for example, by the induction of extreme 
membrane curvature) in order to reduce the energy 
barriers for fusion, and molecules that give direction-
ality to the process. The driving force for membrane 
fusion can come from many sources — for example, 
from the energy that is derived from protein–lipid inter
actions or from protein–protein interactions — and 
ultimately these reactions will have been primed by 
ATP. Directionality might be achieved by fusion pro-
tein folding. In addition, curvature stress that promotes 
fusion-stalk formation will be relieved during fusion-
pore opening and expansion, again giving directionality 
to the process from the beginning. A solid theoretical 
basis for a role for membrane bending in priming  
membrane fusion has previously been developed1,5–8. 
The different activities listed above do not have to be 

handled by different proteins, so the same molecules that 
promote hemifusion-stalk formation might promote  
fusion-pore expansion.

In this review, we discuss SNARE-independent mem-
brane fusion, followed by SNARE-dependent membrane 
fusion, concentrating on the mechanisms by which the 
membranes become fusogenic and the role of fusion 
proteins and other accessory proteins in this process.

Viral fusion
The fusion components of enveloped viral fusion have 
been intensively studied. Viruses bind cell-surface 
proteins, and subsequent membrane fusion can occur 
either on the plasma membrane or after internaliza-
tion9–12. Viral-surface fusion proteins can be structurally 
divided into three classes. The class I fusion proteins are  
mainly α‑helical (FIG. 4a), the class II fusion proteins  
are mainly composed of β‑sheets, and the class III fusion 
proteins have a mixed secondary structure.

Figure 1 | The broad spectrum of membrane-fusion events. Membrane fusion in the secretory pathway and in the 
endosomal and lysosomal systems depends on SNAREs, which are assisted by tethering and regulatory factors that are 
generally required for efficient SNARE function. During Ca2+-dependent exocytosis the SNAREs are assisted by 
synaptotagmins, and in endosome fusion they are assisted by the Rab5 effector EEA1. SNAREs and tethering/regulatory 
factors are replaced by viral fusion proteins in enveloped viruses and by immunoglobulin (Ig)-domain-containing proteins 
in many cell–cell fusion events. The actin cytoskeleton has also been implicated in membrane fusion and in particular in 
cell–cell fusion, where it might stabilize the microvilli. Furthermore, multiple-C2-domain (MC2D) proteins such as tricalbin 
in yeast and myoferlin in mammals have been proposed to function during plasma-membrane repair during leaky cell–cell 
fusion. Yeast vacuole fusion requires SNAREs and the tethering factor HOPS (homotypic fusion and vacuole protein 
sorting). Mitochondrial fusion is mediated by the large GTPases mitofusin and OPA1 of the dynamin superfamily. Mgm1 
and Fzo1 are the yeast orthologues of OPA1 and mitofusin, respectively. Plasma-membrane repair is initiated by the influx 
of Ca2+ into the cytoplasm and is mediated by the rapid and local fusion of small vesicles with each other and with the 
plasma membrane. The MC2D protein dysferlin has been shown to be required for this fusion. The involvement of SNAREs 
in plasma-membrane repair has not been explicitly shown. ER, endoplasmic reticulum.
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